Conversation Agent Server

Empower your conversation agents with dynamic data integration and real-time tool invocation. Enhance user interactions by allowing agents to access and manipulate external resources seamlessly. Streamline workflows and improve efficiency with standardized prompts and actions.

Installation

Installing for Claude Desktop

Manual Configuration Required

This MCP server requires manual configuration. Run the command below to open your configuration file:

npx mcpbar@latest edit -c claude

This will open your configuration file where you can add the Conversation Agent Server MCP server manually.

πŸ€– Dialogflow CX MCP Server πŸš€

Dialogflow CX MCP Python

A powerful Model Control Protocol (MCP) server implementation for Google Dialogflow CX, enabling seamless integration between AI assistants and Google's advanced conversational platform.

πŸ’‘ Pro Tip: This server bridges the gap between AI assistants and Dialogflow CX, unlocking powerful conversational capabilities!

πŸ“‹ Overview

This project provides a suite of tools that allow AI assistants to interact with Dialogflow CX agents through a standardized protocol. The server handles all the complexity of managing conversations, processing intent detection, and interfacing with Google's powerful NLU systems.

✨ Key Features

  • πŸ”„ Bidirectional communication with Dialogflow CX
  • 🎯 Intent detection and matching capabilities
  • 🎀 Audio processing for speech recognition
  • πŸ”Œ Webhook request/response handling
  • πŸ“ Session management for persistent conversations
  • πŸ”’ Secure API authentication

πŸ”§ Requirements

RequirementDescriptionVersion
🐍 PythonProgramming language3.12+
☁️ Google CloudProject with Dialogflow CX enabledLatest
πŸ€– Dialogflow CXConversational agentLatest
πŸ”‘ API CredentialsAuthentication for Google services-

πŸš€ Installation

🐳 Using Docker

# Clone the repository
git clone https://github.com/Yash-Kavaiya/mcp-server-conversation-agents.git
cd mcp-server-conversation-agents

# Build the Docker image
docker build -t dialogflow-cx-mcp .

# Run the container
docker run -it dialogflow-cx-mcp

πŸ’» Manual Installation

# Clone the repository
git clone https://github.com/Yash-Kavaiya/mcp-server-conversation-agents.git
cd mcp-server-conversation-agents

# Create a virtual environment (optional but recommended)
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install the package
pip install -e .

βš™οΈ Configuration

You'll need to provide the following configuration parameters:

ParameterDescriptionExample
dialogflowApiKeyYour Dialogflow API key"abc123def456"
projectIdGoogle Cloud project ID"my-dialogflow-project"
locationLocation of the agent"us-central1"
agentIdID of your Dialogflow CX agent"12345-abcde-67890"

These can be set as environment variables:

export DIALOGFLOW_API_KEY=your_api_key
export PROJECT_ID=your_project_id
export LOCATION=your_location
export AGENT_ID=your_agent_id

πŸ“Š Architecture

graph TD
    A[AI Assistant] <-->|MCP Protocol| B[MCP Server]
    B <-->|Google API| C[Dialogflow CX]
    C <-->|NLU Processing| D[Intent Detection]
    C <-->|Conversation Management| E[Session Management]
    B <-->|Webhooks| F[External Services]

πŸ› οΈ Usage

The MCP server exposes the following tools for AI assistants:

πŸ” initialize_dialogflow

Initialize the Dialogflow CX client with your project details.

await initialize_dialogflow(
    project_id="your-project-id",
    location="us-central1",
    agent_id="your-agent-id",
    credentials_path="/path/to/credentials.json"  # Optional
)

πŸ’¬ detect_intent

Detect intent from text input.

response = await detect_intent(
    text="Hello, how can you help me?",
    session_id="user123",  # Optional
    language_code="en-US"  # Optional
)

🎀 detect_intent_from_audio

Process audio files to detect intent.

response = await detect_intent_from_audio(
    audio_file_path="/path/to/audio.wav",
    session_id="user123",  # Optional
    sample_rate_hertz=16000,  # Optional
    audio_encoding="AUDIO_ENCODING_LINEAR_16",  # Optional
    language_code="en-US"  # Optional
)

🎯 match_intent

Match intent without affecting the conversation session.

response = await match_intent(
    text="What are your hours?",
    session_id="user123",  # Optional
    language_code="en-US"  # Optional
)

πŸ”„ Webhook Handling

Parse webhook requests and create webhook responses:

# Parse a webhook request
parsed_request = await parse_webhook_request(request_json)

# Create a webhook response
response = await create_webhook_response({
    "messages": ["Hello! How can I help you today?"],
    "parameter_updates": {"user_name": "John"}
})

πŸ”§ Response Format

Here's an example of the response format:

πŸ“‹ Click to expand
{
  "messages": [
    {
      "type": "text",
      "content": "Hello! How can I help you today?"
    }
  ],
  "intent": {
    "name": "greeting",
    "confidence": 0.95
  },
  "parameters": {
    "user_name": "John"
  },
  "current_page": "Welcome Page",
  "session_id": "user123",
  "end_interaction": false
}

πŸ”— Smithery Integration

This project is configured to work with Smithery.ai, a platform that allows for easy deployment and management of MCP servers.

πŸ’‘ Pro Tip: Smithery.ai integration enables one-click deployment and simplified management of your Dialogflow CX MCP server!

πŸ“„ License

License: MIT

πŸ‘₯ Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Contribution Workflow

  1. 🍴 Fork the repository
  2. πŸ”§ Create a feature branch (git checkout -b feature/amazing-feature)
  3. πŸ’» Commit your changes (git commit -m 'Add some amazing feature')
  4. πŸš€ Push to the branch (git push origin feature/amazing-feature)
  5. πŸ” Open a Pull Request

Built with ❀️ by the MCP Server team

Share:
Details:
  • Stars


    3
  • Forks


    0
  • Last commit


    3 months ago
  • Repository age


    4 months
View Repository

Auto-fetched from GitHub .

MCP servers similar to Conversation Agent Server:

Β 

Β 
Β 
  • Stars


  • Forks


  • Last commit


Β 

Β 
Β 
  • Stars


  • Forks


  • Last commit


Β 

Β 
Β 
  • Stars


  • Forks


  • Last commit


Conversation Agent Server: MCP Server – MCP.Bar