
Selector AI FastMCP
An MCP Server and sample client for Selector AI
Installation
Installing for Claude Desktop
Manual Configuration Required
This MCP server requires manual configuration. Run the command below to open your configuration file:
npx mcpbar@latest edit -c claude
This will open your configuration file where you can add the Selector AI FastMCP MCP server manually.
Selector AI FastMCP
This repository provides a full implementation of the Model Context Protocol (MCP) for Selector AI. It includes a streaming-capable server and a Docker-based interactive client that communicates via stdin/stdout.
✨ Features
✅ Server
FastMCP-compatible and built on Python
Real-time SSE streaming support
Interactive AI chat with Selector AI
Minimal boilerplate
Built-in health check for container orchestration
Request/response logging and retries
✅ Client
Python client spawns server via Docker
Supports both CLI and programmatic access
Reads/writes via stdin and stdout
Environment variable configuration using .env
🚀 Quick Start
Prerequisites
Python 3.8+
Docker
A Selector AI API Key
Selector API URL
⚙️ Installation
Clone the Repository
git clone https://github.com/automateyournetwork/selector-mcp-server
cd selector-ai-mcp
Install Python Dependencies
pip install -r requirements.txt
Set Environment Variables Create a .env file:
SELECTOR_URL=https://your-selector-api-url
SELECTOR_AI_API_KEY=your-api-key
🐳 Dockerfile
The server runs in a lightweight container using the following Dockerfile:
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "-u", "mcp_server.py"]
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s
CMD python -c "import socket; s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM); s.connect('/tmp/mcp.sock'); s.send(b'{"tool_name": "ready"}\n'); data = s.recv(1024); s.close(); import json; result = json.loads(data); exit(0 if result.get('status') == 'ready' else 1)" || exit 1
Build the Docker Image
docker build -t selector-mcp .
🧠 Using the Client
Start the Client
This will spawn the Docker container and open an interactive shell.
python mcp_client.py
Example CLI Session
You> What is AIOps?
Selector> AIOps refers to the application of AI to IT operations...
Programmatic Access
from selector_client import call_tool, spawn_server
proc = spawn_server()
call_tool(proc, "ready")
response = call_tool(proc, "ask_selector", {"content": "What is AIOps?"})
print(response)
🖥️ Using with Claude Desktop
If you're integrating with Claude Desktop, you can run this server and expose a socket or HTTP endpoint locally:
Run the server using Docker or natively:
python mcp_server.py
Connect to the socket or HTTP endpoint from Claude Desktop's external tool configuration.
Ensure your messages match the format:
{
"method": "tools/call",
"tool_name": "ask_selector",
"content": "What can you tell me about device S6?"
}
Claude Desktop will receive the AI's structured response via stdout.
🛠️ Build Your Own Container
To customize this setup:
Fork or clone this repo
Modify the selector_fastmcp_server.py to integrate your preferred model or routing logic
Rebuild the Docker image:
docker build -t my-custom-mcp .
Update the client to spawn my-custom-mcp instead:
"docker", "run", "-i", "--rm", "my-custom-mcp"
📁 Project Structure
selector-ai-mcp/
├── selector_fastmcp_server.py # Server: MCP + Selector AI integration
├── selector_client.py # Client: Docker + stdin/stdout CLI
├── Dockerfile # Container config
├── requirements.txt # Python deps
├── .env # Environment secrets
└── README.md # You are here
✅ Requirements
Dependencies in requirements.txt:
requests
python-dotenv
📜 License
Apache License 2.0
Stars
3Forks
2Last commit
3 months agoRepository age
3 monthsLicense
Apache-2.0
Auto-fetched from GitHub .
MCP servers similar to Selector AI FastMCP:

Stars
Forks
Last commit

Stars
Forks
Last commit

Stars
Forks
Last commit