A favicon of OpenDeepSearch MCP Server

OpenDeepSearch MCP Server

Enable LLM applications to leverage powerful web search capabilities seamlessly. Interact with OpenDeepSearch's search functionality through a standardized interface, enhancing your applications with advanced search features. Simplify integration with various LLM providers and search tools using this robust server.

Installation

Installing for Claude Desktop

Manual Configuration Required

This MCP server requires manual configuration. Run the command below to open your configuration file:

npx mcpbar@latest edit -c claude

This will open your configuration file where you can add the OpenDeepSearch MCP Server MCP server manually.

OpenDeepSearch MCP Server

This is a Model Context Protocol (MCP) server for OpenDeepSearch that allows LLM applications to interact with OpenDeepSearch's search capabilities.

Features

  • Exposes OpenDeepSearch's search functionality as MCP tools
  • Integrates with Claude Desktop and other MCP-compatible clients
  • Provides a standardized interface for LLM applications to access web search capabilities

Setup

This project uses uv for dependency management.

  1. Install uv: Follow the instructions here.
  2. Sync Dependencies: Navigate to the mcp_server directory and run:
    uv sync
    
    This will install dependencies based on pyproject.toml and uv.lock.

Configuration

The server requires certain environment variables to function correctly, especially API keys for the underlying services. These can be set directly in your environment or passed via the MCP client configuration (e.g., using Smithery CLI).

VariableDescriptionRequiredDefaultNotes
LLM Providers(Provide at least one)
OPENAI_API_KEYAPI key for OpenAI LLM.OptionalNoneNeeded if using OpenAI models.
OPENAI_BASE_URLCustom base URL for OpenAI compatible endpoints.OptionalNone
ANTHROPIC_API_KEYAPI key for Anthropic LLM.OptionalNoneNeeded if using Anthropic models.
OPENROUTER_API_KEYAPI key for OpenRouter.OptionalNoneNeeded if using OpenRouter models.
FIREWORKS_API_KEYAPI key for Fireworks AI.OptionalNoneNeeded if using Fireworks models.
GEMINI_API_KEYAPI key for Google Gemini.OptionalNoneNeeded if using Gemini models.
AZURE_API_KEYAPI key for Azure OpenAI Service.OptionalNoneNeeded if using Azure OpenAI models.
AZURE_API_BASEAPI base URL for Azure OpenAI Service.OptionalNoneNeeded if using Azure OpenAI models.
AZURE_API_VERSIONAPI version for Azure OpenAI Service.OptionalNoneNeeded if using Azure OpenAI models.
AZURE_DEPLOYMENT_IDDeployment ID for Azure OpenAI Service.OptionalNoneNeeded if using Azure OpenAI models.
DEEPSEEK_API_KEYAPI key for DeepSeek.OptionalNoneNeeded if using DeepSeek models.
Search Providers
SERPER_API_KEYAPI key for Serper search provider.OptionalNoneRequired if search_provider is set to 'serper' (either by default or via tool argument).
SEARXNG_INSTANCE_URLURL of your SearXNG instance.OptionalNoneRequired if search_provider is set to 'searxng' (either by default or via tool argument).
SEARXNG_API_KEYAPI key for your SearXNG instance (if required by the instance).OptionalNoneUsed if search_provider is set to 'searxng'.
Rerankers
JINA_API_KEYAPI key for Jina AI Reranker.OptionalNoneRequired if reranker is set to 'jina' (either by default or via tool argument).
Other Tools
WOLFRAM_ALPHA_APP_IDApp ID for WolframAlpha tool integration (if enabled in the agent).OptionalNone
Server Behavior
LOG_LEVELControls the server's logging verbosity (DEBUG, INFO, WARNING, ERROR, CRITICAL).OptionalINFOCan also be set via the --log-level CLI argument passed by smithery.yaml.

Note: API keys passed directly as arguments to the perform_search tool (serper_api_key, searxng_api_key, jina_api_key) will temporarily override the environment variables for that specific call.

Usage with Smithery CLI

You can run this server using the Smithery CLI and the provided smithery.yaml configuration file. This allows you to easily manage the required environment variables.

# Example: Run with OpenRouter key and Serper key
npx -y @smithery/cli@latest run . --config '{"openrouterApiKey":"sk-or-...", "serperApiKey":"your-serper-key"}'

# Example: Run with OpenAI key and SearXNG
npx -y @smithery/cli@latest run . --config '{"openaiApiKey":"sk-...", "searxngInstanceUrl":"https://your-searxng-instance.com"}'

# Example: Run with Gemini key
npx -y @smithery/cli@latest run . --config '{"geminiApiKey":"..."}'

# Example: Run with Azure keys
npx -y @smithery/cli@latest run . --config '{"azureApiKey":"...", "azureApiBase":"https://your-azure.openai.azure.com/", "azureApiVersion":"2024-02-01", "azureDeploymentId":"your-deployment"}'

The smithery.yaml file defines the necessary configuration schema. Refer to it for all available options.

Development

This package follows the MCP specification and provides tools for search functionality through OpenDeepSearch.

Share:
Details:
  • Stars


    1
  • Forks


    1
  • Last commit


    3 months ago
  • Repository age


    3 months
View Repository

Auto-fetched from GitHub .

MCP servers similar to OpenDeepSearch MCP Server:

 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit