A favicon of ShivonAI

ShivonAI

Access custom hiring tools for AI agents and integrate them seamlessly with popular frameworks like LangChain, LlamaIndex, CrewAI, and Agno. Enhance your AI recruitment processes by leveraging powerful tools designed for efficient task execution and data analysis.

Installation

Installing for Claude Desktop

Option 1: One-Command Installation

npx mcpbar@latest install shivonai/python_package -c claude

This command will automatically install and configure the ShivonAI MCP server for your selected client.

Option 2: Manual Configuration

Run the command below to open your configuration file:

npx mcpbar@latest edit -c claude

After opening your configuration file, copy and paste this configuration:

View JSON configuration
{
  "mcpServers": {
    "ShivonAI": {
      "command": "uvx",
      "args": [
        "shivonai"
      ],
      "env": {
        "OPENAI_API_KEY": "${input:openai_api_key}",
        "MCP_AUTH_TOKEN": "${input:mcp_auth_token}"
      }
    }
  }
}

ShivonAI

A Python package for integrating AI recruitment tools with various AI agent frameworks.

Features

  • Acess custom hiring tools for AI agents
  • Integrate MCP tools with popular AI agent frameworks:
    • LangChain
    • LlamaIndex
    • CrewAI
    • Agno

Generate auth_token

visit https://shivonai.com to generate your auth_token.

Installation

pip install shivonai[langchain]  # For LangChain
pip install shivonai[llamaindex]  # For LlamaIndex
pip install shivonai[crewai]     # For CrewAI
pip install shivonai[agno]       # For Agno
pip install shivonai[all]        # For all frameworks

Getting Started

LangChain Integration

from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from shivonai.lyra import langchain_toolkit

# Replace with your actual MCP server details
auth_token = "shivonai_auth_token"

# Get LangChain tools
tools = langchain_toolkit(auth_token)

# Print available tools
print(f"Available tools: {[tool.name for tool in tools]}")

# Initialize LangChain agent with tools
llm = ChatOpenAI(
            temperature=0,
            model_name="gpt-4-turbo",
            openai_api_key="openai-api-key"
        )

agent = initialize_agent(
    tools=tools,
    llm=llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)

# Try running the agent with a simple task
try:
    result = agent.run("what listing I have?")
    print(f"Result: {result}")
except Exception as e:
    print(f"Error: {e}")

LlamaIndex Integration

from llama_index.llms.openai import OpenAI
from llama_index.core.agent import ReActAgent
from shivonai.lyra import llamaindex_toolkit

# Set up OpenAI API key - you'll need this to use OpenAI models with LlamaIndex
os.environ["OPENAI_API_KEY"] = "openai_api_key"

# Your MCP server authentication details
MCP_AUTH_TOKEN = "shivonai_auth_token"


def main():
    """Test LlamaIndex integration with ShivonAI."""
    print("Testing LlamaIndex integration with ShivonAI...")
    
    # Get LlamaIndex tools from your MCP server
    tools = llamaindex_toolkit(MCP_AUTH_TOKEN)
    print(f"Found {len(tools)} MCP tools for LlamaIndex:")
    
    for name, tool in tools.items():
        print(f"  - {name}: {tool.metadata.description[:60]}...")
    
    # Create a LlamaIndex agent with these tools
    llm = OpenAI(model="gpt-4")
    
    # Convert tools dictionary to a list
    tool_list = list(tools.values())
    
    # Create the ReAct agent
    agent = ReActAgent.from_tools(
        tools=tool_list,
        llm=llm,
        verbose=True
    )
    
    # Test the agent with a simple query that should use one of your tools
    # Replace this with a query that's relevant to your tools
    query = "what listings I have?"
    
    print("\nTesting agent with query:", query)
    response = agent.chat(query)
    
    print("\nAgent response:")
    print(response)

if __name__ == "__main__":
    main()

CrewAI Integration

from crewai import Agent, Task, Crew
from langchain_openai import ChatOpenAI  # or any other LLM you prefer
from shivonai.lyra import crew_toolkit
import os

os.environ["OPENAI_API_KEY"] = "oepnai_api_key"

llm = ChatOpenAI(temperature=0.7, model="gpt-4")

# Get CrewAI tools
tools = crew_toolkit("shivonai_auth_token")

# Print available tools
print(f"Available tools: {[tool.name for tool in tools]}")

# Create an agent with these tools
agent = Agent(
    role="Data Analyst",
    goal="Analyze data using custom tools",
    backstory="You're an expert data analyst with access to custom tools",
    tools=tools,
    llm=llm  # Provide the LLM here
)

# Create a task - note the expected_output field
task = Task(
    description="what listings I have?",
    expected_output="A detailed report with key insights and recommendations",
    agent=agent
)

crew = Crew(
    agents=[agent],
    tasks=[task])

result = crew.kickoff()
print(result)

Agno Integration

from agno.agent import Agent
from agno.models.openai import OpenAIChat
from shivonai.lyra import agno_toolkit
import os
from agno.models.aws import Claude

# Replace with your actual MCP server details
auth_token = "Shivonai_auth_token"

os.environ["OPENAI_API_KEY"] = "oepnai_api_key"

# Get Agno tools
tools = agno_toolkit(auth_token)

# Print available tools
print(f"Available MCP tools: {list(tools.keys())}")

# Create an Agno agent with tools
agent = Agent(
    model=OpenAIChat(id="gpt-3.5-turbo"),
    tools=list(tools.values()),
    markdown=True,
    show_tool_calls=True
)

# Try the agent with a simple task
try:
    agent.print_response("what listing are there?", stream=True)
except Exception as e:
    print(f"Error: {e}")

License

This project is licensed under a Proprietary License – see the LICENSE file for details.

Share:
Details:
  • Stars


    0
  • Forks


    0
  • Last commit


    2 months ago
  • Repository age


    3 months
View Repository

Auto-fetched from GitHub .

MCP servers similar to ShivonAI:

 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit


ShivonAI: MCP Server – MCP.Bar