Complex PDF Parsing Toolkit

Collection of PDF parsing libraries like AI based docling, claude, openai, llama-vision, unstructured-io, and pdfminer, pymupdf, pdfplumber etc for efficient snapshot, text, table, and metadata extraction.

Installation

Installing for Claude Desktop

Manual Configuration Required

This MCP server requires manual configuration. Run the command below to open your configuration file:

npx mcpbar@latest edit -c claude

This will open your configuration file where you can add the Complex PDF Parsing Toolkit MCP server manually.

image 

image  image  image  image

📑 Complex PDF Parsing

A comprehensive example codes for extracting content from PDFs

Also, check -> Pdf Parsing Guide

📌 Core Features

📤 Content Extraction

  • Multiple extraction methods with different tools/libraries:
    • Cloud-based: Claude 3.5 Sonnet, GPT-4 Vision, Unstructured.io
    • Local: Llama 3.2 11B, Docling, PDFium
    • Specialized: Camelot (tables), PDFMiner (text), PDFPlumber (mixed), PyPdf etc
  • Maintains document structure and formatting
  • Handles complex PDFs with mixed content including extracting image data

📦 Implementation Options

1. ☁️ Cloud-Based Methods

  • Claude & Llama: Excellent for complex PDFs with mixed content
  • GPT-4 Vision: Excellent for visual content analysis
  • Unstructured.io: Advanced content partitioning and classification

2. 🖥️ Local Methods

  • Llama 3.2 11B Vision: Image-based PDF processing
  • Docling: Excellent for complex PDFs with mixed content
  • PDFium: High-fidelity processing using Chrome's PDF engine
  • Camelot: Specialized table extraction
  • PDFMiner/PDFPlumber: Basic text and layout extraction

🔗 Dependencies

📚 Core Libraries

langchain_ollama
langchain_huggingface
langchain_community
FAISS
python-dotenv

⚙️ Implementation-Specific

anthropic        # Claude
openai           # GPT-4 Vision
camelot-py      # Table extraction
docling         # Text processing
pdf2image       # PDF conversion
pypdfium2       # PDFium processing
boto3           # AWS Textract

🛠️ Setup

  1. Environment Variables
ANTHROPIC_API_KEY=your_key_here    # For Claude
OPENAI_API_KEY=your_key_here       # For OpenAI
UNSTRUCTURED_API_KEY=your_key_here # For Unstructured.io
  1. Install Dependencies
pip install -r requirements.txt
  1. Install Ollama & Models (for local processing)
# Install Ollama
curl https://ollama.ai/install.sh | sh

# Pull required models
ollama pull llama3.1
ollama pull x/llama3.2-vision:11b

📈 Usage

  1. Place PDF files in input/ directory

📄 Example Complex Pdf placed in Input folder

  • sample-1.pdf: Standard tables
  • sample-2.pdf: Image-based simple tables
  • sample-3.pdf: Image-based complex tables
  • sample-4.pdf: Mixed content (text, tables, images)

📝 Notes

  • System resources needed for local LLM operations
  • API keys required for cloud based implementations
  • Consider PDF complexity when choosing implementation
  • Ghostscript required for Camelot
  • Different processors suit different use cases
    • Cloud: Complex documents, mixed content
    • Local: Simple text, basic tables
    • Specialized: Specific content types (tables, forms)
Share:
Details:
  • Stars


    0
  • Forks


    0
  • Last commit


    8 months ago
  • Repository age


    5 months
  • License


    MIT
View Repository

Auto-fetched from GitHub .

MCP servers similar to Complex PDF Parsing Toolkit:

 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit


 

 
 
  • Stars


  • Forks


  • Last commit